Thème: Structure et propriétés

Cours 2 : Nomenclature en chimie organique (version professeur)

B.O. Formule topologique. Familles fonctionnelles : esters, amines, amides et halogénoalcane. Squelettes carbonés insaturés, cycliques. Isomérie de constitution. Polymères. **Nomenclature** des alcanes, alcènes et composés organiques.

I. La nomenclature des alcanes et des alcènes.

1. Nomenclature des alcanes.

1.1. Règles.

- La chaine principale est celle qui contient le plus de carbone.
- La numérotation de la chaine principale s'effectue tel que le numéro affecté à la ramification soit le plus petit.

Formule	Nom
CH ₃ -CH -CH ₂ -CH ₃	2-méthylbutane
CH ₃	
CH ₃ -CH -CH ₃	2-méthylpentane
CH ₂ - CH ₃	
$\begin{array}{c} \text{CH}_3 \\ \mid \\ \text{CH}_3 - \text{C} - \text{CH}_3 \\ \mid \\ \text{CH}_3 \end{array}$	Diméthylpropane

2. Nomenclature des halogénoalcanes.

Règles.

- La chaine principale est celle qui contient le plus de carbone.
- La numérotation de la chaine principale s'effectue tel que le numéro affecté à la position de l'atome appartenant à la famille des halogènes, soit le plus petit.

Formule	Nom	
CH ₃ -CH -CH ₂ -CH ₃ CI	2-chlorobutane	
Br	3-bromopentane	
F	2,2-difluoropropane	
F CI CI F	Fréon (dichlorodifluorométhane)	

3. Nomenclature des alcènes.

Règles.

- La chaine principale est celle qui contient la double liaison.
- La numérotation de la chaine principale s'effectue tel que le numéro affecté à la double liaison soit le plus petit.
- Le nom s'écrit ainsi « racine-2-ène »

Formule	Nom	
CH ₂ = CH - CH ₃	Propène	
$CH_3-CH_2-CH = CH_2$	But-1-ène	
$CH_3-CH_2-CH=CH-CH_3$ CH_3-CH_2 CH_3-CH_3 CH_3-CH_2 CH_3-CH_3 CH_3-	Pent-2-ène Cet alcène possède deux isomères. (Z)- Pent-2-ène (E)- Pent-2-ène	
CH ₃ CH ₂ = CH – CH— CH ₃	3-méthylbut-1-ène	

4. Nomenclature des cycles carbonés saturés et insaturés.

4.1. Cycles carbonés saturés.

Formule	Nom	
C ₆ H ₁₂	Cyclohexane	
H C C H	Cyclopropane	
	Méthylcyclopentane	
	Cyclobutane	

4.2. Cycles carbonés insaturés.

Formule	Nom	
C ₆ H ₆	Benzène	
	Cyclohéxène	
CH ₃	Toluène	

II. Activité sur la nomenclature des composés organiques.

- 1. A partir des exemples qui vous sont donnés, proposer une règle de nomenclature pour les différentes fonctions étudiées. Vous indiquerez en particulier :
 - Comment trouver la chaine carbonée principale.
 - Comment numéroter cette chaine.
 - Quels préfixe et suffixe écrire dans les différents cas.
 - Les règles typographiques utilisées (tiret, virgule...)

Groupe	Formules	Fonction	Exemples	Nom
caractéristique		ou famille		
ou groupe				
fonctionnel				
			CH ₃ —CH ₂ —CH ₂ —OH	Butan-1-ol
- <mark>ОН</mark> Hydroxyle	_СН ₂ -ОН	Alcool Iaire	CH ₂	
- "			CH-CH ₃ -CH ₃ -OH	3-méthylbutan-1-ol
Suffixe :			CH-CH ₂ -CH ₂ -OH	Alcool isoamylique
-ol			3	Alcoorisoamynque
Préfixe :	_СН -ОН		CH ₃ —CH ₂ —CH-OH	
hydroxy	ı	Alcool IIaire	CH₃	Butan-2-ol
, ,	_C- OH	Alluiaire	CH ₃	M4halanana 2 al
	l	Alcool IIIaire	CH ₃ —C-OH CH ₃	Méthylpropan-2-ol
	_c_o		CH ₃ -CH ₂ -CH ₁	Propanal
	Н	Aldéhyde	,,0	
			CH ₃ -CH-CH ₂ -C CH ₃	3-méthylbutanal

—c Carbonyle	_c(°	Cétone	CH ₃ -CH ₂ -C CH ₃ CH ₃ -CH ₂ -C CH ₂ -CH ₃	Butanone Pentan-3-one
	٥.		н—с он	Acide méthanoïque Acide formique
_с ^о	-с″он	Acide carboxylique	CH ₃ —c OH	Acide éthanoïque Acide acétique
Carboxyle			CH ₃ -CH-CH ₂ -COH	Acide 3-méthylbutanoïque
.0	.0		H-C O - CH ₂ -CH ₃	Méthanoate d'éthyle
-c″ o- Ester	_c″_o_	Ester	CH ₃ -CH ₂ -C	Propanoate de méthyle

Groupement	Formules	Fonction	Exemples	Nom
-N- Amine Suffixe:	−− NH ₂	Amine l ^{aire}	CH ₃ -NH ₂ CH ₃ -CH - NH ₂ CH ₃	Méthanamine Propan-2-amine
Amine Préfixe : amino				
-c ^O NH ₂	−c NH ₂	Amide l ^{aire}	H-C NH ₂ CH ₃ - CH ₂ - CH ₂ - CH ₂ - NH ₂	Méthanamide Butanamide

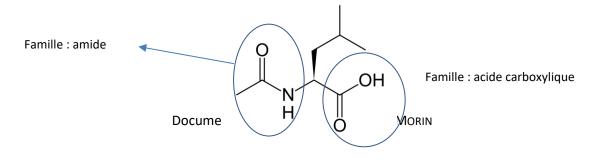
III. Polymères.

Identifier le motif (monomère) d'un polymère à partir de sa formule. Citer des polymères naturels et synthétiques et des utilisations courantes des polymères.

Exemple : le polypropylène

$$---\begin{bmatrix} \mathsf{CH_2} & \mathsf{CH} & \mathsf{CH_2} & \mathsf{CH} \\ \mathsf{CH_3} & \mathsf{CH_3} \end{bmatrix} \begin{bmatrix} \mathsf{CH_2} & \mathsf{CH}_2 & \mathsf{CH} \\ \mathsf{CH_3} & \mathsf{CH_3} \end{bmatrix} \begin{bmatrix} \mathsf{CH_2} & \mathsf{CH}_3 \\ \mathsf{CH_3} \end{bmatrix} = ---$$

Noté:

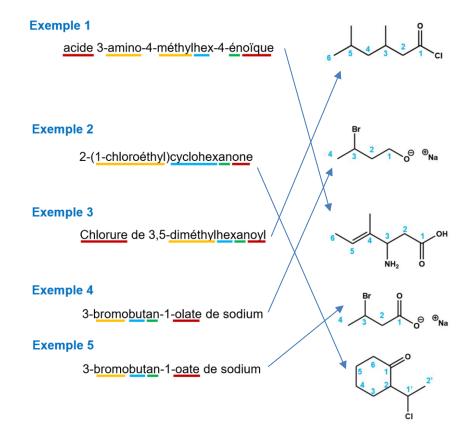

monomère		polymère	
formule	nom usuel	unité de répétition	nom usuel
CH ₂ =CH ₂	éthène (éthylène)	-(CH ₂ -CH ₂) _n - ⁽¹⁾	polyéthylène
EH₃	propène (propylène)	CH ₃	polypropylène
CI	chlorure de vinyle	$\left\langle \cdot \right\rangle_{n}$	poly(chlorure de vinyle)
	styrène	n	polystyrène
H ₂ N-(CH ₂) ₁₀ -COOH	acide amino- 11- undécanoïque	(") n	polyamide 11 (PA 11)

2. Composés organiques avec plusieurs groupements caractéristiques.

1.1. Exemples de médicaments.

L'acétylleucine est une substance chimique qui est utilisée pour le traitement des vertiges, commercialisée par les laboratoires Pierre Fabre avec la spécialité pharmaceutique *Tanganil*.

Entourer les différents groupes caractéristiques (ou groupes fonctionnels) et donner le nom de leur fonction (ou famille).



Les **pénicillines** sont des antibiotiques bêta-lactamines. À la base, la pénicilline est une toxine synthétisée par certaines espèces de moisissures du genre *Penicillium* et qui est inoffensive pour l'homme.

La pénicilline (pénicilline G) fut découverte le 3 septembre 1928, concentrée et surtout nommée par le Britannique Alexander Fleming.

famille : amide
$$\begin{array}{c} H_2N \\ \hline \\ Famille : amide \end{array}$$

1.2. Exemples de molécules à plusieurs fonctions.

